New materials to solve hypersonic travel heat up issue

Chemistry and homework help forum.

Organic Chemistry, Analytical Chemistry, Biochemistry, Physical Chemistry, Computational Chemistry, Theoretical Chemistry, High School Chemistry, Colledge Chemistry and University Chemistry Forum.

Share your chemistry ideas, discuss chemical problems, ask for help with scientific chemistry questions, inspire others by your chemistry vision!

Please feel free to start a scientific chemistry discussion here!

Discuss chemistry homework problems with experts!

Ask for help with chemical questions and help others with your chemistry knowledge!

Moderators: Xen, expert, ChenBeier

Post Reply
bejoy
Sr. Staff Member
Sr. Staff Member
Posts: 111
Joined: Mon Oct 27, 2014 1:57 am

New materials to solve hypersonic travel heat up issue

Post by bejoy »

Researchers at The University of Manchester in collaboration with Central South University (CSU), China, have created a new kind of ceramic coating that could revolutionise hypersonic travel for air, space and defence purposes.

Hypersonic travel means moving at Mach five or above, which is at least five times faster than the speed of sound. When moving at such velocity the heat generated by air and gas in the atmosphere is extremely hot and can have a serious impact on an aircraft or projectile’s structural integrity. That is because the temperatures hitting the aircraft can reach anywhere from 2,000 to 3,000 °C.

The structural problems are primarily caused by processes called oxidation and ablation. This happens when extremely hot air and gas remove surface layers from the metallic materials of the aircraft or object travelling at such high speeds. To combat the problem materials called ultra-high temperature ceramics (UHTCs) are needed in aero-engines and hypersonic vehicles such as rockets, re-entry spacecraft and defence projectiles.

But, at present, even conventional UHTCs can’t currently satisfy the associated ablation requirements of travelling at such extreme speeds and temperatures. However, The University of Manchester researchers and the Royce Institute, in collaboration with the Central South University of China, have designed and fabricated a new carbide coating that is vastly superior in resisting temperatures up to 3,000 °C, when compared to existing UHTCs.

“Future hypersonic aerospace vehicles offer the potential of a step jump in transit speeds. A hypersonic plane could fly from London to New York in just two hours and would revolutionise both commercial and commuter travel,†said professor Philip Withers, Regius professor from The University of Manchester.

So far, the carbide coating developed by teams at the both University of Manchester and Central South University is proving to be 12 times better than the conventional UHTC, zirconium carbide (ZrC). ZrC is an extremely hard refractory ceramic material commercially used in tool bits for cutting tools.

Read more: https://goo.gl/Xjd5Q6
Bejoy
chemical data analyst
www.worldofchemicals.com
Post Reply